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Abstract

“Frontalization” is the process of synthesizing frontal facing views of faces appearing in single

unconstrained photos. Recent reports have suggested that this process may substantially boost

the performance of face recognition systems. This, by transforming the challenging problem

of recognizing faces viewed from unconstrained viewpoints to the easier problem of recogniz-

ing faces in constrained, forward facing poses. Previous frontalization methods did this by

attempting to approximate 3D facial shapes for each query image. We observe that 3D face

shape estimation from unconstrained photos may be a harder problem than frontalization and

can potentially introduce facial misalignments. Instead, we explore the simpler approach of

using a single, unmodified, 3D surface as an approximation to the shape of all input faces. We

show that this leads to a straightforward, efficient and easy to implement method for frontal-

ization. More importantly, it produces aesthetic new frontal views and is surprisingly effective

when used for face recognition and gender estimation.

i



ii



Contents

Abstract i

1 Introduction 1

2 Related work 3

3 Frontalization 5

3.1 Generating a frontalized view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Soft symmetry for self-occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Conditional soft-symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Discussion: Soft vs. hard frontalization . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experiments 15

4.1 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Face verification on the LFW benchmark . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Gender estimation on the Adience benchmark . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 20

iii



Bibliography 21

iv



List of Tables

4.1 Hybrid method verification results on the LFW benchmark. Accuracy

± standard errors (SE) as well as area under the ROC curve (AUC) reported on

the LFW View-2, restricted benchmark. Results for funneled and LFW-a images

were taken from [1]. No SE were reported for these methods. “Value” denotes

the use of descriptor values directly (i.e., L2 or OSS distances); “Values Sqrt”

represents Hellinger and Sqrt-OSS. ∗ Results reported for funneled and LFW-a

images were obtained using four representations and 16 similarity scores to our

three and 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Gender estimation on the Adience benchmark. Mean accuracy (± stan-

dard errors) reported on aligned Adience images [2] and our frontalized Adi-

ence3D images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



vi



List of Figures

1.1 Frontalization process overview. (a) Query photo; (b) facial feature detec-

tions; (c) the same detector used to localize the same facial features in a reference

face photo, produced by rendering a textured 3D computer graphics model (d);

(e) from the 2D coordinates on the query and their corresponding 3D coordinates

on the model we estimate a projection matrix which is then used to back-project

query intensities to the reference coordinate system; (f) estimated visibility due

to non-frontal poses, overlaid on the frontalized result. Warmer colors reflect

less visible pixels. Facial appearance in these regions is produced by borrowing

colors from corresponding symmetric parts of the face; (g) our final frontalized

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Occlusion handling comparison. (a) Input image. (b) Frontalization ob-

tained by the method of [3], showing noticeable smearing artifacts wherever

input facial features were occluded. (c) Our result, produced with occlusion

detection and soft facial symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Visibility estimation. Pixels q′3 and q′4 in the reference (frontalized) coordi-

nate system IR, both map to the same pixel q in the query photo IQ, and so

would both be considered less visible. Their corresponding symmetric pixels q′1

and q′2 are used to predict their appearance in the final frontalized view. . . . . 9

vii



viii LIST OF FIGURES

3.3 Visibility estimation for an extreme out-of-plane pose. (a) Input im-

age. (b) Visibility estimates overlaid on the initial frontalized image. Warmer

colors reflect less visibility of these features in the original input image (a). (c)

Frontalization with soft-symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Corrected soft-symmetry examples. Left: Input image; Mid: results fol-

lowing soft symmetry. Right: Non-symmetric results, automatically selected due

to detected symmetry errors. In the top row, symmetry replicated an occluding

hand, in the bottom an unnatural expression was produced by transferring an

asymmetric expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Eye correction. (a) Input image. (b) Frontalization with soft-symmetry. (c)

Frontalization with eye-excluded soft-symmetry. . . . . . . . . . . . . . . . . . . 11

3.6 Visualization of estimated 3D surfaces. Top: Surfaces estimated for the

same input image (left) by Hassner [3] (mid) and DeepFaces [4] (right). Bot-

tom: Frontalized faces using our single-3D approach (left), Hassner (mid) and

DeepFaces (right). Evidently, both surfaces are very rough approximations to

the shape of the face. Moreover, despite the different surfaces, all three results

seem qualitatively similar. This calls to question the need for shape estimation

or fitting when performing frontalization. . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Mean faces with different alignment methods. Average faces from the 31

David Beckham, 41 Laura Bush, 236 Colin Powell, and 530 George W. Bush

images in the LFW set. From left to right, columns represent different align-

ments: The Funneling of [5], the LFW-a images (available only in grayscale) [1],

the deep-funneled images of [6] and our own frontalized faces. Wrinkles on the

forehead of George W Bush in our result are faintly visible. These were preserved

despite having been averaged from 530 images captured under extremely varying

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



4.1 ROC curves for LFW verification results. Comparing the performance of

the Hybrid method [1] on Funneled LFW images, LFW-a and our own LFW3D,

as well as the performance reported in Sub-SML [7], and the accuracy obtained

by combining both Sub-SML and Hybrid on LFW3D images. . . . . . . . . . . . 16

4.2 Adience3D gender mis-classifications. Top: Females classified as males;

bottom: males classified as females. Errors result from the absence of clear

gender related features or severely degraded images (e.g., top right). . . . . . . . 19

ix



x



Chapter 1

Introduction

Face recognition performances, reported as far back as [8], have shown computer vision capa-

bilities to surpass those of humans. Rather than signaling the end of face recognition research,

these results have led to a redefinition of the problem, shifting attention from highly regulated,

controlled image settings to faces captured in unconstrained conditions (a.k.a., “in the wild”).

This change of focus, from constrained to unconstrained images, has toppled recognition rates

(see, e.g., the original results [5] on the Labeled Faces in the Wild [9] benchmark, published in

the same year as [8]). This drop was not surprising: Unconstrained photos of faces represented

a myriad of new challenges, including changing expressions, occlusions, varying lighting, and

non-frontal, often extreme poses. Yet in recent years recognition performance has gradually

improved to the point where once again claims are being made for super-human face recognition

capabilities (e.g., [10, 11, 4]).

Modern methods vary in how they address the many challenges of unconstrained face recog-

nition. Facial pose variations in particular have often been considered by designing rep-

resentations that pool information over large image regions, thereby accounting for possi-

ble misalignments due to pose changes (e.g., [10, 12, 13, 14]), by improving 2D face align-

ment accuracy [6, 5, 1], or by using massive face collections to learn pose-robust representa-

tions [15, 16, 17, 18].
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2 Chapter 1. Introduction

Figure 1.1: Frontalization process overview. (a) Query photo; (b) facial feature detections;
(c) the same detector used to localize the same facial features in a reference face photo, produced
by rendering a textured 3D computer graphics model (d); (e) from the 2D coordinates on the
query and their corresponding 3D coordinates on the model we estimate a projection matrix
which is then used to back-project query intensities to the reference coordinate system; (f)
estimated visibility due to non-frontal poses, overlaid on the frontalized result. Warmer colors
reflect less visible pixels. Facial appearance in these regions is produced by borrowing colors
from corresponding symmetric parts of the face; (g) our final frontalized result.

Recently, some proposed to simplify unconstrained face recognition by reducing it, at least in

terms of pose variations, to the simpler, constrained settings. This, by automatic synthesis of

new, frontal facing views, or “frontalization” [3, 4]. To this end, they attempt to estimate a

rough approximation for the 3D surface of the face and use this surface to generate the new

views. Although appealing, this approach relies on accurate localization of facial feature points

and does not guarantee that the same alignment (frontalization) will be applied to different

images of the same face. Thus, different images of the same person may well be aligned

differently, preventing their features from being accurately compared.

We propose the simple alternative approach of using a single, unmodified 3D reference for all

query faces in order to produce frontalized views. Ignoring individual differences in facial shapes

may be counter-intuitive – indeed, previous work has emphasized its importance [4] – however,

qualitative examples throughout this paper show that any impact this has on facial appearances

is typically negligible. In fact, faces remain easily recognizable despite this approximation. More

importantly, our frontalized faces are aggressively aligned thereby improving performances over

previous alignment methods. These claims are verified by showing elevated face verification

results on the LFW benchmark and gender classification accuracy on the Adience benchmark,

obtained using our frontalized faces.



Chapter 2

Related work

Generating novel views of a face viewed in a single image has been a longstanding challenge

in computer vision, due in large part to the potential applications such methods have in face

processing and recognition systems.

Previous methods for synthesizing new facial views typically did so by estimating the 3D sur-

face of the face appearing in the photo with varying emphasis on reconstruction accuracy.

Morphable-Models based methods [19, 20, 21, 22] attempt to learn the space of allowable facial

geometries using many aligned 3D face models. These methods, however, typically require

near-frontal views of clear, unoccluded faces, and so are not suitable for our purposes.

Shape from shading methods have been shown to produce outstanding facial details (e.g., [23]).

Their sensitivity to occlusions and specularities (e.g., eyeglasses) and requirement for careful

segmentation of faces from their backgrounds make them less suited for automatic, large scale

application in face processing systems.

Facial symmetry was used in [24] to estimate 3D geometry. Like us, symmetry was used for

replacing details in out-of-view facial regions in [25]. These methods have only been applied to

controlled views due to their reliance on accurate segmentation.

Related to our work is [3] and its extension for face recognition in [4]. Both attempt to adjust

a 3D reference face, fitting it to the texture of the query face in order to preserve natural

3



4 Chapter 2. Related work

appearances. This 3D estimation process, however, cannot guarantee that a similar shape would

be produced for difference images of the same face. It further either relies on highly accurate

facial feature localizations [4], which can be difficult to ensure in practice, or is computationally

heavy, unsuited for mass processing [3].

Finally, [18] described a deep-learning based method for estimating canonical views of faces.

Their method is unique in producing frontal views without estimating (or using) 3D information

in the process. Besides requiring substantial training, their canonical views are not necessarily

frontalized faces and are not guaranteed to be similar to the person appearing in the input

image.

We propose to use a single 3D reference surface, unchanged, in order to produce front facing

views for all query images. Despite the simplicity of this approach, we are unaware of previous

reports of its use in unconstrained face photo alignment for face recognition. We explore the

implications of our approach both qualitatively and empirically.



Chapter 3

Frontalization

We use the term “hard frontalization” to emphasize our use of a single, 3D, reference face

geometry. This, in contrast to others who estimate or modify 3D facial geometry to fit facial

appearances (Sec. 2). Our goal is to produce better aligned images which allow for accurate

comparison of local facial features between different faces. As we next show, the use of a single

3D face results in a straightforward frontalization method which, despite its simplicity, is quite

effective.

Our method is illustrated in Fig. 1.1. A face is detected using an off-the-shelf face detector vi-

ola2004robust and then cropped and rescaled to a standard coordinate system. The same

dimensions and crop ratios previously used for Labeled Faces in the Wild (LFW) [9] images

are used here in order to maintain parameter comparability with previous results.

Facial feature points are localized and used to align the photo with a textured, 3D model of

a generic, reference face. A rendered, frontal view of this face provides a reference coordinate

system. An initial frontalized face is obtained by back-projecting the appearance (colors) of

the query photo to the reference coordinate system using the 3D surface as a proxy. A final

result is produced by borrowing appearances from corresponding symmetric sides of the face

wherever facial features are poorly visible due to the query’s pose. These steps are details next.

5



6 Chapter 3. Frontalization

3.1 Generating a frontalized view

We begin by computing a 3× 4 projection matrix which approximates the one used to capture

the query photo. To this end, we seek 2D-3D correspondences between points in the query

photo (Fig 1.1 (a)) and points on the surface of our 3D face model (Fig 1.1 (d)). This, by

matching query points to points on a rendered, frontal view of the model (Fig 1.1 (c)). Directly

estimating correspondences between a real photo and a synthetic, rendered image can be ex-

ceedingly hard [26]. Instead, we use a robust facial feature detection method which seeks the

same landmarks (e.g., corners of the eyes, mouth etc.) in both images.

Facial feature detection. Many highly effective methods were recently proposed for detecting

facial features. In designing our system, we tested several state-of-the-art detectors, selecting

the supervised descent method (SDM) of [27] as the one which balances both speed of detection

with accuracy. Unlike others, the 49 facial features it localizes do not include points along the

jawline (Fig 1.1 (b-c)). The features it detects are therefore all images of points lying close to

the 3D plane at the front of the face. These and other concerns have been suggested in the

past as reasons for preferring other approaches to pose estimation [28, 29]. As we later show,

this did not appear to be a problem in our tests.

Pose estimation. Given a textured 3D model of a face, the synthetic, rendered view of this

model is produced by specifying a reference projection matrix CM = AM [RM tM ], where

AM is the intrinsic matrix, and [RM tM ] the extrinsic matrix consisting of rotation matrix

RM and translation vector tM . We select rotation and translation to produce a frontal view of

the model (Fig. 1.1 (c)) which serves as our reference (frontalized) coordinate system.

When producing the reference view IR we store for each of its pixels p′ the 3D point coordinates

P = (X, Y, Z)T of the point located on the surface of the 3D model for which:

p′ ∼ CM P. (3.1)
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Figure 3.1: Occlusion handling comparison. (a) Input image. (b) Frontalization obtained
by the method of [3], showing noticeable smearing artifacts wherever input facial features were
occluded. (c) Our result, produced with occlusion detection and soft facial symmetry.

Let pi = (xi, yi)
T be facial feature points detected in the query photo IQ (Fig. 1.1 (b)), and

p′i = (x′i, y
′
i)
T be the same facial features, detected in the reference view (Fig. 1.1 (c)). From

Eq. 3.1, we have the coordinates Pi = (Xi, Yi, Zi)
T of the point on the surface of the model, pro-

jected onto p′i (Fig. 1.1 (d)). This provides the correspondences (pT
i ,P

T
i ) = (xi, yi, Xi, Yi, Zi)

which allow estimating the projection matrix MQ = AQ [RQ tQ], approximating the camera

matrix used to capture the query photo IQ [30]. Projection matrix estimation itself is performed

using standard techniques (Sec. 4).

Frontal pose synthesis. An initial frontalized view IF is produced by projecting query facial

features back onto the reference coordinate system using the geometry of the 3D model. For

every pixel coordinate q′ = (x′, y′)T in the reference view, from Eq. 3.1 we have the 3D location

P = (X, Y, Z)T on the surface of the reference which was projected onto q′ by CM . We use the

expression

p ∼ CQ P (3.2)

to provide an estimate for the location p = (x, y)T in IQ of that same facial feature. Bi-linear

interpolation is used to sample the intensities of the query photo at p. The sampled color is

then assigned to pixel coordinates q′ in the new, frontalized view (Fig. 1.1 (e)).
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3.2 Soft symmetry for self-occlusions

Out-of-plane rotation of the head can cause some facial features to be less visible than others,

particularly those on the sides of the nose and head. In [3] a depth map was used to generate

new views. This has the effect of over-sampling, or “smearing” textures whenever they were

occluded in the original photo (Fig. 3.1 (b). In [4], the authors suggest using mesh triangle

visibility, presumably using 3D surface normals computed on their low resolution 3D shape

estimate (Fig. 3.6 (top right)), though it is not clear if they employed this approach in practice.

In doing so they rely on the accuracy of their facial feature detector to define the exact positions

of their 3D triangles. In addition, the coarse triangulation used to represent their 3D model

may not provide accurate enough, per-pixel visibility estimates.

Estimating visibility. We estimate visibility using an approach similar to the one used by

multi-view 3D reconstruction methods (e.g., [31, 32]). Rather than using two or more views to

estimate 3D geometry we use an approximation to the 3D geometry (the reference face) and a

single view (IR) to estimate visibility in a second image (IQ).

We evaluate visibility by counting the number of times query pixels are accessed when gen-

erating the new view: As a face rotates away from the camera, the angle between its less

visible features and the camera plane increases, consequently increasing the number of surface

points projected onto the same pixel in the photo (Fig. 3.2). This translates to the following

sampling-rate measure of visibility as follows.

Returning to Eq. 3.2, for each pixel q′ in the reference view IR, we store the location in the

query photo of its corresponding pixel q (in practice, a quantized, integer value reflecting the

nearest neighboring pixel for the non-integer value of q). A visibility score is then determined

for each pixel in the frontalized q′ view by:

v(q′) = 1 − exp(−#q). (3.3)

Where #q is the number of times query pixel q corresponded with any frontalized pixel p′.
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Figure 3.2: Visibility estimation. Pixels q′3 and q′4 in the reference (frontalized) coordinate
system IR, both map to the same pixel q in the query photo IQ, and so would both be considered
less visible. Their corresponding symmetric pixels q′1 and q′2 are used to predict their appearance
in the final frontalized view.

Figure 3.3: Visibility estimation for an extreme out-of-plane pose. (a) Input image. (b)
Visibility estimates overlaid on the initial frontalized image. Warmer colors reflect less visibility
of these features in the original input image (a). (c) Frontalization with soft-symmetry.

Fig. 1.1 (f) and Fig. 3.3 (b) both visualize the estimated visibility rates for two faces, overlaid

on the initial frontalized results. In both cases, facial features turned away from the camera

are correctly highlighted.

We note that an alternative method of projecting the surface normals of the 3D model down to

the query photo and using their values to determine visibility can also be employed. We found

the approach described above faster and both methods provided similar results in practice.

Intensities of poorly visible pixels (low visibility scores in Eq. 3.3) are replaced by a mean

of their intensities and the intensities of their corresponding symmetric pixels, weighted by

the visibility scores. We note that this weighing of symmetric parts of the face can produce

artifacts, especially when the head is at non-frontal poses and lighting on both parts of the

face are different (e.g., the example in Fig. 3.3). Although more elaborate methods of blending

the two parts of the face can be employed, descriptors commonly used for face recognition are

typically designed to overcome noise and minor artifacts such as these, and so other blending
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Figure 3.4: Corrected soft-symmetry examples. Left: Input image; Mid: results following
soft symmetry. Right: Non-symmetric results, automatically selected due to detected symmetry
errors. In the top row, symmetry replicated an occluding hand, in the bottom an unnatural
expression was produced by transferring an asymmetric expression.

methods were not used here.

3.3 Conditional soft-symmetry

Although transferring appearances from one side of the face to another may correct pose related

visibility issues, it can also introduce problems whenever one side of the face is occluded by

anything other than the face itself: symmetry can replicate the occlusion, leaving the final

result unrecognizable. Asymmetric facial expressions, lighting, and facial features may also

cause frontalization errors. Two such examples are presented in Fig. 3.4 (mid).

In order to detect these failures, we take advantage of the aggressive alignment of the frontalized

images. By using the same 3D reference, features on frontalized faces appear in the same image

locations regardless of the actual shape of the face. For example, all right corners of all mouths

will appear in the same image region on the frontalized faces. These local appearances, following

such alignment, can be easily verified using a standard robust representation and a classifier

trained on example patches extracted at the same facial locations.

In our implementation, we manually specified eight location on the reference face, corresponding

to the sides of the mouth, nose and eyes. We then trained eight linear SVM classifiers, one
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Figure 3.5: Eye correction. (a) Input image. (b) Frontalization with soft-symmetry. (c)
Frontalization with eye-excluded soft-symmetry.

for each point, to recognize local appearances at each point, represented as LBP code [33, 34].

Training examples were generated from frontalized images (in practice, LFW [9] images not

included in the benchmark tests) using LBP code patches extracted at these eight locations

from all training images.

Given a new frontalized face, we classify its patches, extracted from the same eight locations.

A frontalized face with soft symmetry is rejected in favor of the non-symmetric frontalization if

more of the latter’s points were correctly identified by their classifiers. Fig. 3.4 shows two exam-

ples with (erroneous) soft symmetry and the automatically selected, non-symmetric frontalized

result.

Finally, eyes are ignored when symmetry is applied; their appearance is unchanged from the

initial frontalized view regardless of their visibility. This is done for aesthetic reasons: As

demonstrated in Fig. 3.5, simply using symmetry can result in unnaturally looking, cross-eyed

faces, though this exclusion of the eyes did not seem to affect our face recognition performance

one way or another. To exclude the eyes from the symmetry, we again exploit the strong align-

ment: Eye locations are selected once, in the reference coordinate system, and the same pixel

coordinates were always excluded from the soft symmetry process.
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Figure 3.6: Visualization of estimated 3D surfaces. Top: Surfaces estimated for the
same input image (left) by Hassner [3] (mid) and DeepFaces [4] (right). Bottom: Frontalized
faces using our single-3D approach (left), Hassner (mid) and DeepFaces (right). Evidently,
both surfaces are very rough approximations to the shape of the face. Moreover, despite the
different surfaces, all three results seem qualitatively similar. This calls to question the need
for shape estimation or fitting when performing frontalization.

3.4 Discussion: Soft vs. hard frontalization

Unlike previous methods we do not try to tailor a 3D surface to match the appearance of each

query face. Ostensibly, doing so allowed previous methods to better preserve facial appearances

in the new, synthesized views. We claim that this may actually be unnecessary and possibly

even counterproductive; damaging rather than improving face recognition performance.

In [4], 3D facial geometry was altered by using the coordinates of detected facial feature points

to modify a 3D surface, matching it to the query face. This surface, however, is a rough approx-

imation of the true facial geometry, which preserves little if any identifying features (Fig. 3.6

(top-right)). Furthermore, there is no guarantee that local feature detections will be repeatedly

detected in the same exact positions in different views of the same face. Thus, different 3D

shapes could be estimated for different views of the same face, resulting in misaligned features

and possible noise.

Although the problem of accurately detecting facial feature points is somewhat ameliorated

in [3] by using dense correspondences rather than sparse image detections, they too produce

only a rough approximation of the subject’s face (Fig. 3.6 (top-mid)) and similarly cannot

guarantee alignment of the same facial features across different images.
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Of course, face shape differences may provide important cues for recognition. This is supported

by many previous reports [35] which have found significant age, gender and ethnicity based

differences in facial shapes. However, previous frontalization methods do not guarantee these

differences will actually be preserved, implicitly relying on texture rather than shape for recog-

nition. This is evident in Fig. 3.6 (bottom), where frontalizations for these two methods and

our own appear qualitatively comparable.

Observing that for frontalization, one rough approximation to the 3D facial shape seems as

good as another, we propose using the same 3D reference, unmodified with all faces. In doing

so, we abandon attempts to preserve individual 3D facial structures in favor of gaining highly

aligned faces. This is demonstrate in Fig. 3.7, showing average faces from our frontalized LFW

set (“LFW3D”), as well as funneled [5], LFW-a [1] (aligned using a commercial system), and

deep-funneled [6] versions of LFW. Our results all have slightly elongated faces, reflecting the

shape of the reference face (Fig. 1.1 (c)), yet are all clearly identifiable. Moreover, even when

averaging the 530 LFW3D images of George W. Bush, our result retains crisp details and

sharp edges despite the extreme variability of the original images, testifying to their aggressive

alignment.
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Figure 3.7: Mean faces with different alignment methods. Average faces from the 31
David Beckham, 41 Laura Bush, 236 Colin Powell, and 530 George W. Bush images in the
LFW set. From left to right, columns represent different alignments: The Funneling of [5], the
LFW-a images (available only in grayscale) [1], the deep-funneled images of [6] and our own
frontalized faces. Wrinkles on the forehead of George W Bush in our result are faintly visible.
These were preserved despite having been averaged from 530 images captured under extremely
varying conditions.



Chapter 4

Experiments

Our method was implemented entirely in MATLAB, using the “renderer” function to render a

reference view and produce the 2D-3D correspondences of Eq. 3.1 and the “calib” function to

estimate the projection matrix CQ, both functions available from [3]. In all our experiments,

we used the 3D face geometry used by [3], taken from the USF Human-ID database collec-

tion [36]. Facial feature detection was performed using the SDM method [27], with their own

implementation out-of-the-box. Its running time is approximately .04 seconds. Following de-

tection, frontalization (including pose estimation) took an additional ∼0.1 seconds on 250×250

pixel color images. These times measured on a standard Windows machine with an Intel i5

core processor and 8Gb RAM.

4.1 Qualitative results

Front-facing new views of Labeled Faces in the Wild images are provided throughout this paper.

These were selected to show how our frontalization affects faces of varying age, gender, and

ethnic backgrounds, as well as varying poses, occlusions, and more. We additionally compare

our results with the two most relevant previous methods. Fig. 3.1 and 3.6 present results

obtained using the code from [3]. It was not designed specifically for frontalization, and so front

facing views were manually produced. Fig. 3.6 additionally provides a comparison with [4].

15
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Funneled LFW-a LFW3D
Method Values Values Sqrt Values Values Sqrt Values Values Sqrt
LBP 0.6767 0.6782 0.6824 0.6790 0.7465 ± 0.0053 (0.80) 0.7322 ± 0.0061 (0.79)
TPLBP 0.6875 0.6890 0.6926 0.6897 0.7502 ± 0.0055 (0.81) 0.6723 ± 0.0323 (0.72)
FPLBP 0.6865 0.6820 0.6818 0.6746 0.7265 ± 0.0143 (0.80) 0.7345 ± 0.0061 (0.81)
OSS LBP 0.7343 0.7463 0.7663 0.7820 0.8088 ± 0.0123 (0.87) 0.8052 ± 0.0106 (0.87)
OSS TPLBP 0.7163 0.7226 0.7453 0.7514 0.8022 ± 0.0054 (0.87) 0.7983 ± 0.0066 (0.87)
OSS FPLBP 0.7175 0.7145 0.7466 0.7430 0.7852 ± 0.0057 (0.86) 0.7822 ± 0.0049 (0.85)
Hybrid∗ 0.7847 ± 0.0051 0.8255 ± 0.0031 0.8563 ± 0.0053 (0.92)
Sub-SML [7] 0.8973 ± 0.0038
Sub-SML + Hybrid 0.9165 ± 0.0104 (0.92)

Table 4.1: Hybrid method verification results on the LFW benchmark. Accuracy ±
standard errors (SE) as well as area under the ROC curve (AUC) reported on the LFW View-
2, restricted benchmark. Results for funneled and LFW-a images were taken from [1]. No SE
were reported for these methods. “Value” denotes the use of descriptor values directly (i.e.,
L2 or OSS distances); “Values Sqrt” represents Hellinger and Sqrt-OSS. ∗ Results reported for
funneled and LFW-a images were obtained using four representations and 16 similarity scores
to our three and 12.

Figure 4.1: ROC curves for LFW verification results. Comparing the performance of
the Hybrid method [1] on Funneled LFW images, LFW-a and our own LFW3D, as well as the
performance reported in Sub-SML [7], and the accuracy obtained by combining both Sub-SML
and Hybrid on LFW3D images.

4.2 Face verification on the LFW benchmark

We perform face verification tests on the Labeled Faces in the Wild (LFW) benchmark [9].

Its View-2 test protocol provides ten sets of 600 image pairs. Each one with 300 same person

image pairs and 300 not-same pairs. Ten-fold cross validation tests are used taking each set in
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turn for testing and the rest for training, along with their ground truth same/not-same labels.

Mean ± standard error (SE) over these ten folds are reported as well as area under the ROC

curve (AUC). Our tests follow the “Image-Restricted, Label-Free Outside Data” protocol [37];

outside data only used to train the facial feature detector.

We aim to see how much is face recognition performance improved with our frontalized faces.

Thus, rather than using recent state-of-the-art methods which may mask the contribution

of frontalization, we use the “Hybrid” method [13], one of the first methods developed and

successfully tested on LFW. Since then, newer, more modern methods have out-performed it

with increasing margins by using better representations and learning techniques. We test how

much of this performance gain can be reproduced by simply using better aligned images.

Our implementation uses these three representations: LBP [33, 34], TPLBP and FPLBP [13].

Image descriptors are compared using L2 distance, Hellinger distance [13] (L2 between de-

scriptor element-wise square roots), One-Shot Similarity (OSS) [38] and OSS applied to the

descriptors’ element-wise square root. In total, we use 3 descriptors × 4 similarities = 12D

vector of similarity values, classified by stacking [39] linear SVM classifiers. [40].

We frontalized LFW images as described in Sec. 3. Conditional symmetry (Sec. 3.3) was used

here to also reject failed frontalizations: whenever six or more of the eight detectors failed on

frontalized images, with and without soft-symmetry, the system defaulted to a planar alignment

of the photo, in our case the corresponding deep-funneled images [6]. Of the 13,233 LFW images,

∼2.5% were thus rejected, though more undetected failures exist. In most cases, these were

due to occluded or extreme profile faces. In all cases, failures were the result of badly localized

facial features; better facial feature detectors would therefore allow for better frontalization.

Results are compared to those reported on the LFW-a collection using a similar system [1].

To our knowledge, these are the best results reported for the same face verification pipeline

with an alternative alignment method, presumably optimized for best results. Alternatively,

Deep-funneled images can be used instead of LFW-a but its performance gain over LFW-a are

small [6].
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Table 4.1 lists our results and Fig. 4.1 provides ROC curves. Evidently, our frontalized faces

provide a performance boost of over 3% (possibly more, as the original Hybrid method included

C1-Gabor descriptors in addition to the three we used). More importantly, these results show

that rather than losing information when correcting pose using a single reference model, faces

aligned this way are easier to classify than by using appearance preserving, in-plane alignment

methods.

We additionally report the performance obtained by combining the Sub-SML method of [7],

using their own implementation, with our Hybrid method, computed on frontalized LFW3D

images. Sub-SML and Hybrid methods were combined by adding the Sub-SML image-pair

similarity scores to the stacking SVM for a total of 13 values used for classification. For

comparison, the performance originally reported by [7] is also provided. Adding the Hybrid

method with LFW3D provides a 2% accuracy boost, raising the final performance to 0.9165 ±

1.04. To date, this is the highest score reported on the LFW challenge in the “Image-Restricted,

Label-Free Outside Data” category.

4.3 Gender estimation on the Adience benchmark

The recently introduced Adience benchmark for gender estimation [2] has been shown to be

the most challenging of its kind. It includes 26,580 photos of 2,284 subjects, downloaded from

Flickr albums. Unlike LFW images, these images were automatically uploaded to Flickr from

iPhone devices without manual filtering. They are thus far less constrained than LFW images.

We use the non-frontal, version of this benchmark, which includes images of faces in ±45◦

yaw poses. The test protocol defined for these images is 5-fold cross validation tests with

album/subject-exclusive splits (images from the same subject or Flickr album appear in only

one split). Performance is reported using mean classification accuracy ± standard errors (SE).

We compare results obtained by the best performing method in [2] on Adience images aligned

with their proposed method with our implementation of the same method applied to frontal-

ized Adience images (“Adience3D”). We again use LBP and FPLBP as image representations
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Figure 4.2: Adience3D gender mis-classifications. Top: Females classified as males; bot-
tom: males classified as females. Errors result from the absence of clear gender related features
or severely degraded images (e.g., top right).

Method Addience-aligned Adience3D
LBP 0.734 ± 0.007 0.800 ± 0.007
FPLBP 0.726 ± 0.009 0.753 ± 0.010
LBP+FPLBP+Dropout 0.5 0.761 ± 0.009 0.793 ± 0.008

Table 4.2: Gender estimation on the Adience benchmark. Mean accuracy (± standard
errors) reported on aligned Adience images [2] and our frontalized Adience3D images.

(results for TPLBP were not reported in [2]). Linear SVM were trained to classify descriptor

vectors as belonging to either “male” or “female” using images in the training splits. We also

tested training performed using “dropout-SVM” [2] with a dropout rate of 0.5.

Gender estimation results are listed in Table 4.2. Remarkably, frontalization advanced state-of-

the-art performance by ∼ 4%. Some classification errors are additionally provided in Fig. 4.2.

These demonstrate the elevated challenge of the Adience images along with successful frontal-

izations even with these challenging images.
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Conclusion

Computer vision systems have long since sought effective means of overcoming the many chal-

lenges of face recognition in unconstrained conditions. One of the key aspects of this problem

is the variability of facial poses. Recently, an attractive, intuitive solution to this has been to

artificially change the poses of faces appearing in photos, by generating novel, frontal facing

views. This better aligns their features and reduces the variability that face recognition systems

must address.

We propose producing such frontalized faces using a simple yet, as far as we know, previously

untested approach of employing a single 3D shape, unchanged, with all query photos. We show

that despite the use of a face shape which can be very different from the true shapes, the

resulting frontalizations lose little of their identifiable features. Furthermore, they are highly

aligned, allowing for appearances to be easily compared across faces, despite possibly extreme

pose differences in the input images.

Beyond providing a simple and effective means for face frontalization, our work relates to

a longstanding debate in computer vision on the role of appearances vs. 3D shape in face

recognition. Our results seem to suggest that 3D information, when it is estimated directly

from the query photo rather than provided by other means (e.g., stereo or active sensing

systems), may potentially damage recognition performance instead of improving it. In the

settings explored here, it may therefore be facial texture, rather than shape, that is key to

20
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effective face recognition.
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